The strong law under random truncation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The central limit theorem under random truncation.

Under left truncation, data (X(i), Y(i)) are observed only when Y(i) ≤ X(i). Usually, the distribution function F of the X(i) is the target of interest. In this paper, we study linear functionals ∫ φ dF(n) of the nonparametric maximum likelihood estimator (MLE) of F, the Lynden-Bell estimator F(n). A useful representation of ∫ φ dF(n) is derived which yields asymptotic normality under optimal m...

متن کامل

Estimating extreme quantiles under random truncation

The goal of this paper is to provide estimators of the tail index and extreme quantiles of a heavy-tailed random variable when it is righttruncated. The weak consistency and asymptotic normality of the estimators are established. The finite sample performance of our estimators is illustrated on a simulation study and we showcase our estimators on a real set of failure data. keywords: Asymptotic...

متن کامل

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

متن کامل

Circular Law and Arc Law for Truncation of Random Unitary Matrix

Let V be the m×m upper-left corner of an n× n Haar-invariant unitary matrix. Let λ1, · · · , λm be the eigenvalues of V. We prove that the empirical distribution of a normalization of λ1, · · · , λm goes to the circular law, that is, the uniform distribution on {z ∈ C; |z| ≤ 1} as m → ∞ with m/n → 0. We also prove that the empirical distribution of λ1, · · · , λm goes to the arc law, that is, t...

متن کامل

the strong law of large numbers for pairwise negatively dependent random variables

in this paper, strong laws of large numbers (slln) are obtained for the sums ƒ°=nii x1, undercertain conditions, where {x ,n . 1} n is a sequence of pairwise negatively dependent random variables.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1998

ISSN: 0090-5364

DOI: 10.1214/aos/1024691085